
Lux URP Essentials 1.82 – URP 12.1

Lux URP Essentials – URP 12.1
Since URP 12 introduces a huge amount of new features I will update Lux
URP Essentials in several steps. However most of the work has been done
by now.

Latest Changes
Please read the ChangeLog.txt file to find out more.

Currently supported shaders
The currently ported shaders are: Clear Coat (yeah still present as it offers options not
available using the built in shaders), Cloth, Flat Shaded, Fuzzy Lighting, Skin, Hair, Lux Uber, Top
down Projection, Terrain, Terrain Mesh, Toon, Transmission, Grass, Vegetation, Water and Tree
Creator.

Please open the URP12 Demo scene to get a better picture.

Regarding custom lighting nodes for Shader Graph all nodes now have been converted to work
with URP 12.1.

So check out the Custom Shader Graphs Demo scene.

Custom Lighting
Custom lighting functions such as Cloth, Skin or Transmission can be used in forward and
deferred rendering – however when it comes to deferred, materials using these functions will
be rendered in forward rendering.

Due to decals and SSAO, they need an additional but rather cheap GBuffer pass as well :(

This however should only be true in case you have checked “Accurate G-buffer normals”
in your deferred renderer. Otherwise you may comment out the GBuffer pass.

Deferred Rendering
Just like in the built in render pipeline URP’s deferred renderer does not allow us to use custom
stencils – they are simply ignored. This means that stencil based fast outline features are not
supported in deferred. Instead you can use the new Fast Outline Double Pass shader.

Deferred also does not offer any support for custom lighting functions which therefore will
fallback to forward. See above.

Forward Rendering
Forward rendering now supports Depth Priming which is just what most people know as depth
prepass. In case it is enabled or in case decals or SSAO are enabled (which also cause a depth



Lux URP Essentials 1.82 – URP 12.1

prepass) Alpha To Coverage most likely will produce artifacts: We simply can not write more
than a single value into the z-buffer.

So simply deactivate Alpha To Coverage on all materials in case you use Depth Priming,
SSAO or decals.

Shaders

Additional Surface Options
Most shaders contain two new custom surface options:

Enable Normal in Depth Normal Pass The built in Lit shader will output per pixel
normals in the lit depth normal pass which makes it sample the normal map twice. In
case you only have subtle normals or just need better performance you may uncheck
this and the depth normal pass will skip the per pixel normals. This affects SSAO and
decals.

Receive Decals HDRP offers this per material and so do Lux URP Essentials. So in case
you do not want or need a material to receive decals just uncheck this option.

Uber
Uber’s parallax mapping has been optimized for the new Depth Priming and will produce stable
results even if alpha testing is enabled (unlike the built in lit shader. I filed a bug report about
this…).

Uber now supports best-fit normals as invented by Anton Kaplanyan for Cryengine 3. These
are useful in deferred rendering: The default quality of the GBuffer normals is far from being
optimal (8bit per channel only) and will create a faceted look on sharp specular highlights.

So URP’s deferred renderer offers Accurate G-buffer Normals. Activating this feature however
means that all normals on all materials will be first encoded to OctQuadEncoded ones during
the GBuffer pass and then decoded for each deferred lighting pass – which produces some
overhead (and breaks the terrain add pass…).

You might have a lot of materials where low quality normals would just be fine as you have a
strong normal map or low smoothness so artifacts are barely visible.

Here best-fit normals come into play as you dedicatedly specify which material needs high
quality normals and only use them there. Furthermore best-fit normals only need the encoding
step, decoding is just the same as for regular written normals and virtually free.

So best-fit normals let you save a lot of computational power and bandwidth by adding
the possibility to render high res normals only on selected objects/materials.



Lux URP Essentials 1.82 – URP 12.1

URP low quality GBuffer normals. Note the pixelated or faceted look of the highlight.

Uber using best-fit normals. Normals here still are not perfect and will show up some noise. But in most cases they
look way better than the standard low quality normals. Using Accurate Gbuffer normals all across the board will look
better than best-fit normals for sure but at higher costs on the GPU.

In case you opt for Accurate G-buffer Normals best-fit normals will automatically be optimized
away.

Best-fit normals always only are applied in deferred rendering because in forward rendering we
simply have nearly perfect normals anyway.

Toon Shader
Due to the new Depth Priming we can no longer use a single shader to draw the toon shaded
surfaces plus the outline: As we only have one Depth or DepthNormal prepass the outline
would simply be ignored. Thus we have to assign two materials to the renderer: First one for
the toon shading and the second one to add the outline.

Grass
URP 12 allows us to use shaders supporting instancing within the terrain engine. So now you
can place grass using the grass shader right within the terrain engine.

Grass supports improved specular lighting as I added the Specular Mask feature from ATG.
Using this feature you should be able to add some nice reflections even if your grass model
has heavily tweaked/smoothed normals.



Lux URP Essentials 1.82 – URP 12.1

It also comes with Screen Space Normals which are normals on single sided geometry not
being tweaked based on VFACE but their orientation in screen space. So if enabled the shader
will not flip or mirror the normals but just ensure that normals will always point towards the
camera. This may soften lighting on some models using the grass shader (models whose
normals are not fully softened).

Grass now supports displacement or touch bending by default. So there is no need to use the
"Lux URP Grass TextureDisplace" shader anymore which will be deprecated. You have to enable
this feature in the shader tho :)

Foliage
The foliage shader (which can also be used within the terrain engine, just like grass) offers
various techniques to add some kind of transmission even to deferred rendering, which are:
Standard, Simple, NormalVS, Transmission.

Standard Well, this mode does not support any kind of transmission… Normals of back
faces will be corrected using VFACE Cheap

Simple Just like SpeedTree the shader will not flip the normals based on VFACE. So
some faces will show up proper front face lighting, some will show up false back face
lighting. This will create the illusion of transmission but also may add a lot of false
specular highlights. Cheapest.

NormalVS This will not add transmission lighting but may correct and smooth lighting
compared to Standard and Simple. Normals here are not flipped or mirrored based on
VFACE but will be tweaked in screen space to always point towards the camera. A bit
more expensive.

Transmission This mode will add proper transmission lighting for the most dominant
directional light only. Additional spot or point lights are not supported. This mode will
sampe shadows and cookies in the deferred GBuffer pass (which usually does not do
this at all) and thus makes it: Most expensive.

Wrapped diffuse lighting is not supported in deferred.

Foliage now comes with an early preview of touch bending and includes additional, advanced
turbulence which may replace edge fluttering in the future. The foliage shader also includes a
vertex color debug more so no additional shader is required.

Terrain
Here Unity seems to have to add some more love:

● The Lit terrain shader shipping with URP 12 does not support bakes shadow maps. Lux
Essentials' one does.

● When it comes to Real Time Global Illumination the original shader does not support
this as well. Lux Essentials' one does somehow.

Please note: It is all a bit unstable. So in case the additional pass does not render
properly leaving black spots on the terrain, the distance terrain using the basemap
shader does not show up or anything else strange happens, try to toggle the terrain on
and off.



Lux URP Essentials 1.82 – URP 12.1

Skin
Skin now supports detail normals which however only gets applied to the normals used for
specular lighting. Diffuse lighting is not affected by these.

Hair
The transparent Hair Blend shader does not define _SURFACE_TYPE_TRANSPARENT although
it is transparent in order to receive decals and screen space shadows. In case you run into
issues consider defining the keyword by editing the shader (you will find commented lines).

Water
Water is always rendered using forward.

New inputs:

Diffuse Normal Up Lets you tweak the normal that is used to calculate diffuse lighting
on the underwater fog. 0.0: Only the geometry normal will be taken into account. 1.0:
Only a fully upwards pointing normal will be taken into account. Anything in between
will lerp both normals.

Add Foam from Normal Lets you strengthen the foam distribution based on the water
normals to break up foam. Default was 4.0.

Billboard
The billboard shader will use deferred lighting if deferred is enabled and Alpha is set to Tested.
If Alpha is set to Blended the shader will always be rendered using the forward pass.

The LuxURP_BillboardBounds.cs script lets you tweak the billboards' mesh bounds to prevent
them from being culled too early.

Fast Outline Double Pass
In order to make fast outline and stencil work with deferred we have to change the way it
works.

Deferred clears the stencil buffer. So we can’t prepare the stencil buffer while rendering the
mesh using its deferred material shader.

Instead the Fast Outline Deferred shader prepares the stencil buffer itself by using 2 passes:
The first one only writes into the stencil buffer while the second one then draws the outline.

As this shader does not rely on the original material being able to prepare the stencil
buffer you can use it on materials using shader graph shaders as well!

As the shader uses 2 passes you have 2 settings for ZTesting and Culling.

The stencil settings are shared among the passes, altho the stencil pass of course ignores
Stencil Comparison and will always write to the stencil buffer if its ZTest and Culling params let
it.



Lux URP Essentials 1.82 – URP 12.1

Find more information about the fast outline features and stencils in the original
documentation.

Particles
Simple lit particles are always forward but now support light layers, point light shadows and
cookies.

Glass Shader
The Glass shader is always forward but now supports light layers, point light shadows and
cookies.

Depth Only
For URP 12 i added a new shader: Lux URP Depth Only Lit.

The old ones use regular Depth and DepthNormals passes which may not play nicely with
Depth Priming or the Depth Normal pass.

The Lux URP Depth Only Lit just uses a regular Lit pass but only writes to depth. Doing so we
can manually set when it gets rendered into the depth buffer by adjusting the Render Queue
param. Using Render Queue = Transparent-x (values between 2750 - 3000 should be fine) here
lets you at least occlude transparent materials like water.

https://docs.google.com/document/d/1ck3hmPzKUdewHfwsvmPYwSPCP8azwtpzN7aOLJHvMqE/edit#heading=h.gpukpasbzt01
https://docs.google.com/document/d/1ck3hmPzKUdewHfwsvmPYwSPCP8azwtpzN7aOLJHvMqE/edit#heading=h.gpukpasbzt01


Lux URP Essentials 1.82 – URP 12.1

Shader Graph and custom lighting
The old Shader Graph nodes for custom lighting still work when it comes to forward lighting
but do not support any new features such as cookies or light layers.

The deferred problem
They also can not really be used with deferred lighting enabled: Actually they may produce a
somehow proper output for just a single directional light – which they may sample and output to
emissive. Any additional light however will be fully ignored: Their data is simply not bound.

Here Unity will have to add some functionality like declaring a pass as “Forward only”. I filed a
request and we will have to see what they will come up with.

The deferred solution
Meanwhile I looked into a workaround and actually found that enabling “Clear Coat” in the
master node declares the final forward pass as “UniversalForwardOnly”. So we can use this
trick to make the always forward rendered shader graph shaders picking up proper lighting.

Implementing custom lighting
The basics of implementing a custom lighting with Shader Graph are still the same:

We have to “mute” the PBR Master node by nulling all its inputs so its result will always be
half3(0,0,0) and the shader compiler will strip it. The custom lighting then is plugged into the
Emission node. Workflow must be set to Specular. Using Metallic instead would make lighting
be calculated twice. You may use the LuxURP Metallic Albedo to Specular Albedo node to
convert from metallic to specular.

Please note: Shaders using custom lighting will always be rendered in forward even if your
camera uses deferred.

Nulling the PBR Master Node
In order to add basic support for the Rendering Debugger we should not simply null Albedo,
Specular, Smoothness and Ambient Occlusion but provide proper values for the debug view.
We also have to provide a normal in tangent space. Latter is used by the debug view but also
by the depth normal pass.

The new custom lighting functions therefore provide new outputs: MetaSmoothness,
MetaOcclusion and MetaNormal:



Lux URP Essentials 1.82 – URP 12.1

Manually nulled PBR Master node using the Meta Outputs.

Supported features and shortcomings

Rendering Debugger
Custom Shader graphs support Material Overrides and let you debug Albedo, Specular,
Smoothness, Ambient Occlusion and Normals. They do NOT support Lighting Debug Modes
as here the shaders fall back using the built in lighting functions.

Real Time Global Illumination Preview
Indirect works. Albedo is broken.

Baked Global Illumination Preview
Here Albedo and Emission are broken – unfortunately. You can however preview the baked
lightmap.

Deferred and Accurate G-buffer normals
If this feature is enabled SSAO will break as is not based upon the depth normal buffer but only
takes the octa encoded GBuffer normals into account. The result on a simple shader graph
based shader using clear coat (gray head):



Lux URP Essentials 1.82 – URP 12.1

I do not recommend to use Accurate G-buffer normals as they slow down rendering and also
break e.g. terrain rendering. If you need accurate highlights on some of your shiny materials:

● use the Lux URP Essentials Uber shader and activate best-fit normals.
● or use a forward only material – which would be most precise.

URP 12 custom lighting functions
Currently available custom lighting functions:

● GGX Aniso
● Charlie Sheen
● Transmission
● Toon V2
● Skin
● Clearcoat
● Flat Shading: Here i added a simple node (LuxURP Flat Shading Normal) that converts

the normal properly. I recommend using this node and going with standard lighting
instead of using the custom flat lighting function. See: Lux Flat Shading Deferred
shader graph


