
Lux SRP Grass Displacement Beta 

Lux SRP Grass Displacement 
The Lux SRP Grass Displacement package contains an early preview of a 
fast yet versatile grass displacement solution for the Universal Render 
Pipeline and was designed to work in conjunction with the Lux LWRP/URP 
Essential grass shader and URP version of the Advanced Terrain Grass 
package. 

Compatibility 
Lux SRP Grass Displacement needs URP. LWRP is not supported. It has been successfully 
tested on DX11, GLES 3.2 and Metal (both desktop) and Android using a Google Pixel (1). VR 
only supports single pass rendering at the moment. 

Table of Content 

Lux SRP Grass Displacement 
Compatibility 
Table of Content 
Getting Started 

How it works 
The demo 

Tweaking the displacement 
Size and Resolution of the final Displacement Texture 
Tweaking the displacement per displacer 

Displacement source texture 
Simple Displacement FX shader 

Shader Inputs 
Using simple geometry 
Using particle systems 
Distance to ground 

ControlDisplacerParticleSys.cs 
ControlDisplacer.cs 

Overlapping Displacers 
Adjusting the grass material 

TODOS 
 

Getting Started 
1. Import the provided package then edit your URP Settings (like: 

UniversalRP-HighQuality), open the General foldout and add another renderer by hitting 
the “+” button. Then assign the ForwardRenderer GrassDisplacement which is provided 
with the package. 

 



Lux SRP Grass Displacement Beta 

 

 
 

2. Select the ForwardRenderer GrassDisplacement renderer asset in the project tab so that 
is shows up in the inspector and make sure that the GrassDisplacementFeature is 
assigned as Renderer Feature: 
 

 
 

3. Now open the included demo (Grass Displacement RenderFeature Demo), find the 
camera, open its Rendering foldout and assign the ForwardRenderer 
GrassDisplacement renderer. This will activate our custom scriptable render pass. 
 

 



Lux SRP Grass Displacement Beta 

 
 
Please note: Alternatively you can also make the ForwardRenderer GrassDisplacement 
renderer being used as default renderer in your URP Settings by clicking the Set Default 
button, which will fix all issues with grass in the scene view. Here the button has been 
clicked already: 
 

 
 

4. If everything worked out fine you now should see a preview of the generated render 
texture (Gizmos have to be activated in the scene and game view) in the upper left 
corner of the scene and game view which is displayed by the 
DisplayGrassDisplacementTexture script also attached to the camera. 

5. Enter play mode and watch how the spheres and the turbines displace the grass. 

6. Different packages may contain additional demos (like the package that ships with 
ATG). When testing the additional demos, please check that the proper Forward 
Renderer is assigned to the main camera as described in 3. 

 



Lux SRP Grass Displacement Beta 

How it works 
Lux SRP Grass Displacement uses a common displacement technique based upon an 
offscreen rendered displacement texture which gets sampled by the grass and vegetation 
shaders to actually apply the displacement. 

But unlike other solutions it does not use a second camera to render the displacement texture 
but utilizes Unity’s scriptable renderpasses instead – which saves us a lot of overhead and 
minimizes the work the CPU has to do: no extra culling, no extra light culling. It also does not 
reclaim an extra layer which is fine as we only have 32. 

The scriptable render pass sets up a virtual orthographic camera looking top down from more 
or less the current camera’s position, which only renders objects (displacers: simple meshes 
like quads or particle systems) using a shader whose only pass is named: 
LuxGrassDisplacementFX. This name guarantees that the displacers are not rendered by the 
regular camera but the virtual only. 

The result is stored in a render texture and send to the grass shader – together with the size 
and position of the displacement texture in world space. The shader then checks if the 
processed vertex is within the bounds of the displacement texture and – if so – samples and 
applies the displacement. 

No matter how many displacers are active and affecting a single grass mesh the shader will 
always only do a single texture lookup per vertex at most.  

Putting it all together we can efficiently render the displacement texture (thanks to the 
scriptable render pass) as well as render the displacement with just one texture lookup in the 
vertex shader (if needed). 

Please note: As we are using a scriptable render pass displacers must be “visible” to the 
actual camera to be rendered. So they might not appear in the top down projected 
displacement texture although they would be visible to the top down camera. This is 
absolutely fine in 99% of all use cases and speeds up rendering. 

The demo 
Coming back to the demo we have various objects displacing the grass: 

● The blue sphere is driven by Physix. Its displacement is driven by a particle system (PF 
Particle System (Trail Follower blue)) that smoothly follows the sphere and emits 
particles according to velocity. 

● The green sphere also is driven by Physix. Its displacement is driven by a simple quad 
(Quad(Follower green)) that smoothly follows the sphere. 

● The red sphere is driven by an animation. Its displacement is driven by a particle 
system (PF Particle System (Trail Follower red)) that smoothly follows the sphere and 
emits particles according to velocity. 

● The yellow spheres show how you can dynamically adjust the strength of a simple 
displacer according to its distance to ground using the ControlDisplacer script. 

● The orange cube uses a simple quad based displacer which is parented under the 
cube. As its displacement material has Rotate Normal checked you may rotate it 

 



Lux SRP Grass Displacement Beta 

around the y axis. The displacement source texture actually has some information in 
the B color channel which pushes down the vertices in the inner of the rectangle. 

The reason why most displacers use the Smooth Follow script is the fact that (most) they roll 
and rotate and i did not want Unity to rotate particle systems… Other objects with a different 
movement may just use different scripts to move their displacers or even simply contain them 
as child object. Please note: Rotating the displacer and its texture will break the directionality 
of the displacement unless you check Rotate Normal in the Simple Displacement shader. See 
the orange cube. 

● The turbine uses a different particle system (and some supporting geometry) which 
gets rotated by script. 

● The moving turbine uses the same particle system as the turbine and gets animated 
up and down by script. It uses the ControlDisplacerParticleSys script which checks its 
distance to ground and adjusts the alpha of the emitted particles accordingly. 

Please note: Grass in the demo scene use a tweaked shader: Lux LWRP Grass 
TextureDisplace. The regular Lux LWRP Grass shader will just ignore any displacement.  

Tweaking the displacement 

Size and Resolution of the final Displacement Texture 
Size and Resolution of the final displacement texture which gets sampled by the grass shader 
can be set in the assigned Renderer → Render Features → GrassDispalcementFeature → 
Settings: 

Resolution Resolution of the rendertexture in 
pixel. Keep it as small as possible to speed up 
rendering. 

Size The size or coverage of the rendertexture 
in meters and world space. As the render 
texture is centered on the camera by default a 
size of 16 would give you 8 meters in front of 
your camera covered by the displacement 
texture. 

Shift Render Tex If checked the virtual 
camera will be pushed a little bit forward so 
more of the rendertexture is in front of the 
actual camera and you can reduce the Size of 
the render texture. This however will make the 
rendertexture a bit more unstable in space so 
if you just rotate the camera grass might 
suddenly change between being displaced 
and not being displaced. 

 

 



Lux SRP Grass Displacement Beta 

Tweaking the displacement per displacer 
The most important ingredients are the displacement source texture (usually some kind of 
normal) assigned to the Simple Displacement FX shader and its alpha value. 

Displacement source texture 

While the displacement source texture RGB channels drive the direction in which the vertices 
will be displaced the A (alpha) value drives the final strength. 

The provided T Displacement Normal displacement source texture contains a radial normal in 
RG (B is set to white) and a smooth falloff in A. So all vertices will be pushed outwards from 
the center according to the fall off. 

● RG define the displacement along the world xz axes. 

● B lets you add some boost when it comes to pushing the vertices downwards. If you do 
not want this extra boost just leave it completely white. Setting B to 0.0 (black) will 
push vertices down at full strength. The orange cube in the demo shows an example of 
using B to push vertices downwards. 

● A may contain a mask. 

This texture has to be imported using sRGB (Color Texture) to be unchecked. Do not import it 
as Normal Map and make sure that you have chosen a high compression quality. You may 
even consider importing it uncompressed as RGBA 32 bit to avoid all compression artifacts in 
case it is a small texture (like 128x128 pixel).  

Simple Displacement FX shader 

All renderes that shall contribute to displacement have to use the Simple Displacement FX 
shader which is listed under: "Lux SRP Displacement/Simple Displacement" in the shader 
dropdown. This shader is quite basic and simply does some alpha blending according to the 
texture’s alpha and vertex color. 

The shader uses Tags{"LightMode" = "LuxGrassDisplacementFX"} which makes it visible only 
for the virtual orthographic camera. If you need a visual feedback of the diplacer in scene and 
game view choose the Simple Displacement FX Debug shader which has two passes and gets 
rendered by the virtual orthographic camera as well as by the scene and game view cameras. 

Shader Inputs 

Displacement Source Texture The displacement source texture which drives directionality and 
strength. RGB contains a normal while A contains the fall off. This texture has to be imported 
using sRGB (Color Texture) to be unchecked. 

Dynamic Alpha If you want to change the final alpha by script using a MaterialPropertyBlock (in 
order to take the distance to ground into account) you have to check this. 
Checking Dynamic Alpha will make the shader not being compatible with the SRP Batcher. So 
only check it if you need it or consider enabling GPU Instancing. 

Alpha Final alpha multiplier if Dynamic Alpha is checked. This usually gets set by script 
using a MaterialPropertyBlock. 

Rotate Normal In case you rotate a displacer/displacement source texture the normals have to 
be rotated within the shader to fit. So check this if your rotate the displacer. 

 



Lux SRP Grass Displacement Beta 

Please note: The mesh used by the displacer (quad or particle systems) needs normals and 
tangents. This might need you to adjust the vertex stream of your particle system. 

Scr Blend Mode and Dst Blend Mode define the blending. Regular alpha blending needs 
ScrAlpha and OneMinusSrcAlpha which is the default. 

This shader works for particle systems as well as for single quads but it does not support 
texture sheet animation. 

Using simple geometry 

When using simple geometry like a quad just make sure you use the Smooth Follow script so 
the quad will always face the virtual top down camera and does not rotate around the y axis 
which would break the directionality of the displacement. 

Alternatively you may try to check Rotate Normal in the material used by the displacer. This 
would allow at least rotations around the y axis. Other rotations are not supported by the 
shader. 

Using particle systems 
Using particle systems of course is the most powerful way as it allows you to create trails and 
complex effects like explosions. 

Animating the Alpha over lifetime is pretty important to get a smooth displacement. 

The Render Mode has to be set to Horizontal Billboards so the virtual camera renders the 
particles properly. 

Everything else is up to your creativity :) 

Please have a look into the provide particle systems and prefabs. 

Distance to ground 
Imagine you attach a particle system to an enemy to make it create trails. Then this enemy 
may jump or climb up a wall. In this case you do not want it to displace any grass anymore. 
In order to achieve this you can either stop the particle system from emitting further particles 
– or you can tweak the start color alpha value and make the particles less visible and even fully 
transparent. Latter is the way i have chosen for the example scripts. 

ControlDisplacerParticleSys.cs 

This script does a raycast to determine the distance to ground and adjusts the start color’s 
alpha of the currently emitted particles accordingly. This means that the distance to ground of 
the particle system at the moment a new particle is emitted drives the opacity of the new 
particle. The distance of the particle to ground over lifetime is not taken into account. 

Max Distance Max distance to ground before the emitted particle will be fully transparent. 

Fall Off Lets you adjust how the distance influences the opacity (uses power). 

Layer Mask Here you have to assign the layer your ground/terrain is assigned to as the raycast 
only will take a single layer into account. 

Debug Ray If checked the script will draw the ray in green (if there is a hit inside the max 
distance) or red (otherwise). 

 



Lux SRP Grass Displacement Beta 

ControlDisplacer.cs 

This script does a raycast to determine the distance to ground and adjusts the Alpha of 
assigned material using a MaterialPropertyBlock. Please note that you have to check Dynamic 
Alpha in the material inspector. 

Max Distance Max distance to ground before the displacer will be fully transparent. 

Fall Off Lets you adjust how the distance influences the opacity (uses power). 

Layer Mask Here you have to assign the layer your ground/terrain is assigned to as the raycast 
only will take a single layer into account. 

Debug Ray If checked the script will draw the ray in green (if there is a hit inside the max 
distance) or red (otherwise). 

Please note that both scripts are only blueprints. In most cases you already know the distance 
to ground of your enemy e.g. so there is no need to fire a 2nd ray. Or you may use a unity 
terrain. In this case Terrain.SampleHeight might be more efficient than doing a raycast. 
 

Overlapping Displacers 
Currently the diplacers are rendered simply using alpha blending so they may just overwrite 
each other. Summing up the displacement would be nice but required an RGBAhalf 
rendertexture which made things more expensive… 

Using alpha blending makes the final render texture be driven by the order Unity draws the 
displacers which should be back to front as they are transparent. You may however make sure 
that a strong displacer never gets hidden by a weaker one by editing its material and raising 
the Render Queue. 

Adjusting the grass material 
The tweaked  Lux LWRP Grass TextureDisplace shader comes with a new parameter → 
Displacement → Strength which allows you to control the impact of the displacement texture. 

In case you use ATG URP you will notice that the grass shader has a section Touch Bending.  

Enable Touch Bending Check Enable Touch Bending to make the shader sample and 
apply the displacement texture. 

Sample Size Lets your tweak the position at which the displacement map gets 
sampled. 0.0 → at pivot, 1.0 → at vertex position. 
Use 0.0 e.g. for single plants such as flowers. 

Displacement XZ Lets you control the displacement strength along the XZ axis. 

Displacement Y Lets you control how much the vertices will pushed 
downwards. 

Depending on the baked bending you may have to use rather high values her like 
3 or 4. 

Normal Displacement Lets you control the strength and direction in which the 
normal gets bent. 

 

 



Lux SRP Grass Displacement Beta 

TODOS 
● Add support for texture sheet animations. 
● Add support for rotation. Done 
● Add support for trail renderes. 
● Add support for single pass instanced. 

 
After all it is far from being finished. But a first step. Feedback is welcome. 

 


