using UnityEngine; using System.Collections.Generic; [System.Serializable] public class MegaBindInf { public float dist; public int face; public int i0; public int i1; public int i2; public Vector3 bary; public float weight; public float area; } [System.Serializable] public class MegaBindVert { public float weight; public List verts = new List(); } public struct MegaCloseFace { public int face; public float dist; } [ExecuteInEditMode] public class MegaWrap : MonoBehaviour { public float gap = 0.0f; public float shrink = 1.0f; public List neededVerts = new List(); public Vector3[] skinnedVerts; public Mesh mesh = null; public Vector3 offset = Vector3.zero; public bool targetIsSkin = false; public bool sourceIsSkin = false; public int nomapcount = 0; public Matrix4x4[] bindposes; public BoneWeight[] boneweights; public Transform[] bones; public float size = 0.01f; public int vertindex = 0; public Vector3[] freeverts; // position for any vert with no attachments public Vector3[] startverts; public Vector3[] verts; public MegaBindVert[] bindverts; public MegaModifyObject target; public float maxdist = 0.25f; public int maxpoints = 4; public bool WrapEnabled = true; public MegaNormalMethod NormalMethod = MegaNormalMethod.Unity; #if UNITY_5 || UNITY_2017 || UNITY_2018 || UNITY_2019 || UNITY_2020 public bool UseBakedMesh = true; #endif [ContextMenu("Help")] public void Help() { Application.OpenURL("http://www.west-racing.com/mf/?page_id=3709"); } Vector4 Plane(Vector3 v1, Vector3 v2, Vector3 v3) { Vector3 normal = Vector4.zero; normal.x = (v2.y - v1.y) * (v3.z - v1.z) - (v2.z - v1.z) * (v3.y - v1.y); normal.y = (v2.z - v1.z) * (v3.x - v1.x) - (v2.x - v1.x) * (v3.z - v1.z); normal.z = (v2.x - v1.x) * (v3.y - v1.y) - (v2.y - v1.y) * (v3.x - v1.x); normal = normal.normalized; return new Vector4(normal.x, normal.y, normal.z, -Vector3.Dot(v2, normal)); } float PlaneDist(Vector3 p, Vector4 plane) { Vector3 n = plane; return Vector3.Dot(n, p) + plane.w; } public float GetDistance(Vector3 p, Vector3 p0, Vector3 p1, Vector3 p2) { return MegaNearestPointTest.DistPoint3Triangle3Dbl(p, p0, p1, p2); } public float GetPlaneDistance(Vector3 p, Vector3 p0, Vector3 p1, Vector3 p2) { Vector4 pl = Plane(p0, p1, p2); return PlaneDist(p, pl); } public Vector3 MyBary(Vector3 p, Vector3 p0, Vector3 p1, Vector3 p2) { Vector3 bary = Vector3.zero; Vector3 normal = FaceNormal(p0, p1, p2); float areaABC = Vector3.Dot(normal, Vector3.Cross((p1 - p0), (p2 - p0))); float areaPBC = Vector3.Dot(normal, Vector3.Cross((p1 - p), (p2 - p))); float areaPCA = Vector3.Dot(normal, Vector3.Cross((p2 - p), (p0 - p))); bary.x = areaPBC / areaABC; // alpha bary.y = areaPCA / areaABC; // beta bary.z = 1.0f - bary.x - bary.y; // gamma return bary; } public Vector3 MyBary1(Vector3 p, Vector3 a, Vector3 b, Vector3 c) { Vector3 v0 = b - a, v1 = c - a, v2 = p - a; float d00 = Vector3.Dot(v0, v0); float d01 = Vector3.Dot(v0, v1); float d11 = Vector3.Dot(v1, v1); float d20 = Vector3.Dot(v2, v0); float d21 = Vector3.Dot(v2, v1); float denom = d00 * d11 - d01 * d01; float w = (d11 * d20 - d01 * d21) / denom; float v = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; return new Vector3(u, v, w); } public Vector3 CalcBary(Vector3 p, Vector3 p0, Vector3 p1, Vector3 p2) { return MyBary(p, p0, p1, p2); } public float CalcArea(Vector3 p0, Vector3 p1, Vector3 p2) { Vector3 e1 = p1 - p0; Vector3 e2 = p2 - p0; Vector3 e3 = Vector3.Cross(e1, e2); return 0.5f * e3.magnitude; } Vector3 e11 = Vector3.zero; Vector3 e22 = Vector3.zero; Vector3 cr = Vector3.zero; public Vector3 FaceNormal(Vector3 p0, Vector3 p1, Vector3 p2) { //Vector3 e1 = p1 - p0; //Vector3 e2 = p2 - p0; e11.x = p1.x - p0.x; e11.y = p1.y - p0.y; e11.z = p1.z - p0.z; e22.x = p2.x - p0.x; e22.y = p2.y - p0.y; e22.z = p2.z - p0.z; //Vector3 e2 = p2 - p0; cr.x = e11.y * e22.z - e22.y * e11.z; cr.y = -(e11.x * e22.z - e22.x * e11.z); // * -1; cr.z = e11.x * e22.y - e22.x * e11.y; return cr; //Vector3.Cross(e11, e22); } static void CopyBlendShapes(Mesh mesh1, Mesh clonemesh) { #if UNITY_5_3 || UNITY_5_4 || UNITY_5_5 || UNITY_5_6 || UNITY_2017 || UNITY_2018 || UNITY_2019 || UNITY_2020 int bcount = mesh1.blendShapeCount; //GetBlendShapeFrameCount(); Vector3[] deltaverts = new Vector3[mesh1.vertexCount]; Vector3[] deltanorms = new Vector3[mesh1.vertexCount]; Vector3[] deltatans = new Vector3[mesh1.vertexCount]; for ( int j = 0; j < bcount; j++ ) { int frames = mesh1.GetBlendShapeFrameCount(j); string bname = mesh1.GetBlendShapeName(j); for ( int f = 0; f < frames; f++ ) { mesh1.GetBlendShapeFrameVertices(j, f, deltaverts, deltanorms, deltatans); float weight = mesh1.GetBlendShapeFrameWeight(j, f); clonemesh.AddBlendShapeFrame(bname, weight, deltaverts, deltanorms, deltatans); } } #endif } public Mesh CloneMesh(Mesh m) { Mesh clonemesh = new Mesh(); clonemesh.vertices = m.vertices; #if UNITY_5_0 || UNITY_5_1 || UNITY_5 || UNITY_2017 || UNITY_2018 || UNITY_2019 || UNITY_2020 clonemesh.uv2 = m.uv2; clonemesh.uv3 = m.uv3; clonemesh.uv4 = m.uv4; #else clonemesh.uv1 = m.uv1; clonemesh.uv2 = m.uv2; #endif clonemesh.uv = m.uv; clonemesh.normals = m.normals; clonemesh.tangents = m.tangents; clonemesh.colors = m.colors; clonemesh.subMeshCount = m.subMeshCount; for ( int s = 0; s < m.subMeshCount; s++ ) clonemesh.SetTriangles(m.GetTriangles(s), s); CopyBlendShapes(m, clonemesh); clonemesh.boneWeights = m.boneWeights; clonemesh.bindposes = m.bindposes; clonemesh.name = m.name; // + "_copy"; clonemesh.RecalculateBounds(); return clonemesh; } [ContextMenu("Reset Mesh")] public void ResetMesh() { if ( mesh ) { mesh.vertices = startverts; mesh.RecalculateBounds(); RecalcNormals(); //mesh.RecalculateNormals(); } target = null; bindverts = null; } public void SetMesh() { MeshFilter mf = GetComponent(); Mesh srcmesh = null; if ( mf != null ) srcmesh = mf.sharedMesh; else { SkinnedMeshRenderer smesh = (SkinnedMeshRenderer)GetComponent(typeof(SkinnedMeshRenderer)); if ( smesh != null ) srcmesh = smesh.sharedMesh; } if ( srcmesh != null ) { mesh = CloneMesh(srcmesh); if ( mf ) mf.sharedMesh = mesh; else { SkinnedMeshRenderer smesh = (SkinnedMeshRenderer)GetComponent(typeof(SkinnedMeshRenderer)); smesh.sharedMesh = mesh; } } } public void Attach(MegaModifyObject modobj) { targetIsSkin = false; sourceIsSkin = false; if ( mesh && startverts != null ) mesh.vertices = startverts; if ( modobj == null ) { bindverts = null; return; } nomapcount = 0; if ( mesh ) mesh.vertices = startverts; MeshFilter mf = GetComponent(); Mesh srcmesh = null; if ( mf != null ) { //skinned = false; srcmesh = mf.mesh; } else { SkinnedMeshRenderer smesh = (SkinnedMeshRenderer)GetComponent(typeof(SkinnedMeshRenderer)); if ( smesh != null ) { //skinned = true; srcmesh = smesh.sharedMesh; sourceIsSkin = true; } } if ( srcmesh == null ) { Debug.LogWarning("No Mesh found on the target object, make sure target has a mesh and MegaFiers modifier attached!"); return; } if ( mesh == null ) mesh = CloneMesh(srcmesh); //mf.mesh); if ( mf ) mf.mesh = mesh; else { SkinnedMeshRenderer smesh = (SkinnedMeshRenderer)GetComponent(typeof(SkinnedMeshRenderer)); smesh.sharedMesh = mesh; } if ( sourceIsSkin == false ) { SkinnedMeshRenderer tmesh = (SkinnedMeshRenderer)modobj.GetComponent(typeof(SkinnedMeshRenderer)); if ( tmesh != null ) { targetIsSkin = true; if ( !sourceIsSkin ) { Mesh sm = tmesh.sharedMesh; bindposes = sm.bindposes; boneweights = sm.boneWeights; bones = tmesh.bones; skinnedVerts = sm.vertices; //new Vector3[sm.vertexCount]; } } } if ( targetIsSkin ) { if ( boneweights == null || boneweights.Length == 0 ) targetIsSkin = false; } neededVerts.Clear(); verts = mesh.vertices; startverts = mesh.vertices; freeverts = new Vector3[startverts.Length]; Vector3[] baseverts = modobj.verts; //basemesh.vertices; int[] basefaces = modobj.tris; //basemesh.triangles; bindverts = new MegaBindVert[verts.Length]; // matrix to get vertex into local space of target Matrix4x4 tm = transform.localToWorldMatrix * modobj.transform.worldToLocalMatrix; List closefaces = new List(); Vector3 p0 = Vector3.zero; Vector3 p1 = Vector3.zero; Vector3 p2 = Vector3.zero; for ( int i = 0; i < verts.Length; i++ ) { MegaBindVert bv = new MegaBindVert(); bindverts[i] = bv; Vector3 p = tm.MultiplyPoint(verts[i]); p = transform.TransformPoint(verts[i]); p = modobj.transform.InverseTransformPoint(p); freeverts[i] = p; closefaces.Clear(); for ( int t = 0; t < basefaces.Length; t += 3 ) { if ( targetIsSkin && !sourceIsSkin ) { p0 = modobj.transform.InverseTransformPoint(GetSkinPos(basefaces[t])); p1 = modobj.transform.InverseTransformPoint(GetSkinPos(basefaces[t + 1])); p2 = modobj.transform.InverseTransformPoint(GetSkinPos(basefaces[t + 2])); } else { p0 = baseverts[basefaces[t]]; p1 = baseverts[basefaces[t + 1]]; p2 = baseverts[basefaces[t + 2]]; } float dist = GetDistance(p, p0, p1, p2); if ( Mathf.Abs(dist) < maxdist ) { MegaCloseFace cf = new MegaCloseFace(); cf.dist = Mathf.Abs(dist); cf.face = t; bool inserted = false; for ( int k = 0; k < closefaces.Count; k++ ) { if ( cf.dist < closefaces[k].dist ) { closefaces.Insert(k, cf); inserted = true; break; } } if ( !inserted ) closefaces.Add(cf); } } float tweight = 0.0f; int maxp = maxpoints; if ( maxp == 0 ) maxp = closefaces.Count; for ( int j = 0; j < maxp; j++ ) { if ( j < closefaces.Count ) { int t = closefaces[j].face; if ( targetIsSkin && !sourceIsSkin ) { p0 = modobj.transform.InverseTransformPoint(GetSkinPos(basefaces[t])); p1 = modobj.transform.InverseTransformPoint(GetSkinPos(basefaces[t + 1])); p2 = modobj.transform.InverseTransformPoint(GetSkinPos(basefaces[t + 2])); } else { p0 = baseverts[basefaces[t]]; p1 = baseverts[basefaces[t + 1]]; p2 = baseverts[basefaces[t + 2]]; } Vector3 normal = FaceNormal(p0, p1, p2); float dist = closefaces[j].dist; //GetDistance(p, p0, p1, p2); MegaBindInf bi = new MegaBindInf(); bi.dist = GetPlaneDistance(p, p0, p1, p2); //dist; bi.face = t; bi.i0 = basefaces[t]; bi.i1 = basefaces[t + 1]; bi.i2 = basefaces[t + 2]; bi.bary = CalcBary(p, p0, p1, p2); bi.weight = 1.0f / (1.0f + dist); bi.area = normal.magnitude * 0.5f; //CalcArea(baseverts[basefaces[t]], baseverts[basefaces[t + 1]], baseverts[basefaces[t + 2]]); // Could calc once at start tweight += bi.weight; bv.verts.Add(bi); } } if ( maxpoints > 0 && maxpoints < bv.verts.Count ) bv.verts.RemoveRange(maxpoints, bv.verts.Count - maxpoints); // Only want to calculate skin vertices we use if ( !sourceIsSkin && targetIsSkin ) { for ( int fi = 0; fi < bv.verts.Count; fi++ ) { if ( !neededVerts.Contains(bv.verts[fi].i0) ) neededVerts.Add(bv.verts[fi].i0); if ( !neededVerts.Contains(bv.verts[fi].i1) ) neededVerts.Add(bv.verts[fi].i1); if ( !neededVerts.Contains(bv.verts[fi].i2) ) neededVerts.Add(bv.verts[fi].i2); } } if ( tweight == 0.0f ) nomapcount++; bv.weight = tweight; } } void LateUpdate() { DoUpdate(); } public Vector3 GetSkinPos(int i) { Vector3 pos = target.sverts[i]; Vector3 bpos = bindposes[boneweights[i].boneIndex0].MultiplyPoint(pos); Vector3 p = bones[boneweights[i].boneIndex0].TransformPoint(bpos) * boneweights[i].weight0; bpos = bindposes[boneweights[i].boneIndex1].MultiplyPoint(pos); p += bones[boneweights[i].boneIndex1].TransformPoint(bpos) * boneweights[i].weight1; bpos = bindposes[boneweights[i].boneIndex2].MultiplyPoint(pos); p += bones[boneweights[i].boneIndex2].TransformPoint(bpos) * boneweights[i].weight2; bpos = bindposes[boneweights[i].boneIndex3].MultiplyPoint(pos); p += bones[boneweights[i].boneIndex3].TransformPoint(bpos) * boneweights[i].weight3; return p; } Vector3 gcp = Vector3.zero; public Vector3 GetCoordMine(Vector3 A, Vector3 B, Vector3 C, Vector3 bary) { //Vector3 p = Vector3.zero; gcp.x = (bary.x * A.x) + (bary.y * B.x) + (bary.z * C.x); gcp.y = (bary.x * A.y) + (bary.y * B.y) + (bary.z * C.y); gcp.z = (bary.x * A.z) + (bary.y * B.z) + (bary.z * C.z); return gcp; } SkinnedMeshRenderer tmesh; #if UNITY_5 || UNITY_2017 || UNITY_2018 || UNITY_2019 || UNITY_2020 Mesh bakedmesh = null; #endif void DoUpdate() { if ( WrapEnabled == false || target == null || bindverts == null ) //|| bindposes == null ) return; if ( mesh == null ) SetMesh(); if ( mesh == null ) return; if ( targetIsSkin && neededVerts != null && neededVerts.Count > 0 ) //|| (targetIsSkin && boneweights == null) ) { if ( boneweights == null || tmesh == null ) { tmesh = (SkinnedMeshRenderer)target.GetComponent(typeof(SkinnedMeshRenderer)); if ( tmesh != null ) { if ( !sourceIsSkin ) { Mesh sm = tmesh.sharedMesh; bindposes = sm.bindposes; bones = tmesh.bones; boneweights = sm.boneWeights; } } } #if UNITY_5 || UNITY_2017 || UNITY_2018 || UNITY_2019 || UNITY_2020 if ( tmesh == null ) tmesh = (SkinnedMeshRenderer)target.GetComponent(typeof(SkinnedMeshRenderer)); if ( UseBakedMesh ) { if ( bakedmesh == null ) bakedmesh = new Mesh(); tmesh.BakeMesh(bakedmesh); skinnedVerts = bakedmesh.vertices; } else { for ( int i = 0; i < neededVerts.Count; i++ ) skinnedVerts[neededVerts[i]] = GetSkinPos(neededVerts[i]); } #else for ( int i = 0; i < neededVerts.Count; i++ ) skinnedVerts[neededVerts[i]] = GetSkinPos(neededVerts[i]); #endif } Matrix4x4 stm = Matrix4x4.identity; Vector3 p = Vector3.zero; if ( targetIsSkin && !sourceIsSkin ) { #if UNITY_5 || UNITY_2017 || UNITY_2018 || UNITY_2019 || UNITY_2020 if ( UseBakedMesh ) stm = transform.worldToLocalMatrix * target.transform.localToWorldMatrix; // * transform.worldToLocalMatrix; else stm = transform.worldToLocalMatrix; // * target.transform.localToWorldMatrix; // * transform.worldToLocalMatrix; #else stm = transform.worldToLocalMatrix; // * target.transform.localToWorldMatrix; // * transform.worldToLocalMatrix; #endif for ( int i = 0; i < bindverts.Length; i++ ) { if ( bindverts[i].verts.Count > 0 ) { p = Vector3.zero; float oow = 1.0f / bindverts[i].weight; int cnt = bindverts[i].verts.Count; for ( int j = 0; j < cnt; j++ ) { MegaBindInf bi = bindverts[i].verts[j]; Vector3 p0 = skinnedVerts[bi.i0]; Vector3 p1 = skinnedVerts[bi.i1]; Vector3 p2 = skinnedVerts[bi.i2]; Vector3 cp = GetCoordMine(p0, p1, p2, bi.bary); Vector3 norm = FaceNormal(p0, p1, p2); float sq = 1.0f / Mathf.Sqrt(norm.x * norm.x + norm.y * norm.y + norm.z * norm.z); float d = (bi.dist * shrink) + gap; //cp += d * norm.x; cp.x += d * norm.x * sq; cp.y += d * norm.y * sq; cp.z += d * norm.z * sq; float bw = bi.weight * oow; if ( j == 0 ) { p.x = cp.x * bw; p.y = cp.y * bw; p.z = cp.z * bw; } else { p.x += cp.x * bw; p.y += cp.y * bw; p.z += cp.z * bw; } //cp += ((bi.dist * shrink) + gap) * norm.normalized; //p += cp * (bi.weight / bindverts[i].weight); } Vector3 pp = stm.MultiplyPoint3x4(p); verts[i].x = pp.x + offset.x; verts[i].y = pp.y + offset.y; verts[i].z = pp.z + offset.z; //verts[i] = transform.InverseTransformPoint(p) + offset; } } } else { stm = transform.worldToLocalMatrix * target.transform.localToWorldMatrix; // * transform.worldToLocalMatrix; //Matrix4x4 tm = target.transform.localToWorldMatrix; for ( int i = 0; i < bindverts.Length; i++ ) { if ( bindverts[i].verts.Count > 0 ) { p = Vector3.zero; float oow = 1.0f / bindverts[i].weight; for ( int j = 0; j < bindverts[i].verts.Count; j++ ) { MegaBindInf bi = bindverts[i].verts[j]; Vector3 p0 = target.sverts[bi.i0]; Vector3 p1 = target.sverts[bi.i1]; Vector3 p2 = target.sverts[bi.i2]; Vector3 cp = GetCoordMine(p0, p1, p2, bi.bary); Vector3 norm = FaceNormal(p0, p1, p2); float sq = 1.0f / Mathf.Sqrt(norm.x * norm.x + norm.y * norm.y + norm.z * norm.z); float d = (bi.dist * shrink) + gap; //cp += d * norm.x; cp.x += d * norm.x * sq; cp.y += d * norm.y * sq; cp.z += d * norm.z * sq; float bw = bi.weight * oow; if ( j == 0 ) { p.x = cp.x * bw; p.y = cp.y * bw; p.z = cp.z * bw; } else { p.x += cp.x * bw; p.y += cp.y * bw; p.z += cp.z * bw; } //cp += ((bi.dist * shrink) + gap) * norm.normalized; //p += cp * (bi.weight / bindverts[i].weight); } } else p = freeverts[i]; //startverts[i]; Vector3 pp = stm.MultiplyPoint3x4(p); verts[i].x = pp.x + offset.x; verts[i].y = pp.y + offset.y; verts[i].z = pp.z + offset.z; //p = target.transform.TransformPoint(p); //verts[i] = transform.InverseTransformPoint(p) + offset; } } mesh.vertices = verts; RecalcNormals(); mesh.RecalculateBounds(); } public MegaNormMap[] mapping; public int[] tris; public Vector3[] facenorms; public Vector3[] norms; int[] FindFacesUsing(Vector3 p, Vector3 n) { List faces = new List(); Vector3 v = Vector3.zero; for ( int i = 0; i < tris.Length; i += 3 ) { v = verts[tris[i]]; if ( v.x == p.x && v.y == p.y && v.z == p.z ) { if ( n.Equals(norms[tris[i]]) ) faces.Add(i / 3); } else { v = verts[tris[i + 1]]; if ( v.x == p.x && v.y == p.y && v.z == p.z ) { if ( n.Equals(norms[tris[i + 1]]) ) faces.Add(i / 3); } else { v = verts[tris[i + 2]]; if ( v.x == p.x && v.y == p.y && v.z == p.z ) { if ( n.Equals(norms[tris[i + 2]]) ) faces.Add(i / 3); } } } } return faces.ToArray(); } // Should call this from inspector when we change to mega public void BuildNormalMapping(Mesh mesh, bool force) { if ( mapping == null || mapping.Length == 0 || force ) { // so for each normal we have a vertex, so find all faces that share that vertex tris = mesh.triangles; norms = mesh.normals; facenorms = new Vector3[tris.Length / 3]; mapping = new MegaNormMap[verts.Length]; for ( int i = 0; i < verts.Length; i++ ) { mapping[i] = new MegaNormMap(); mapping[i].faces = FindFacesUsing(verts[i], norms[i]); } } } public void RecalcNormals() { if ( NormalMethod == MegaNormalMethod.Unity ) //|| mapping == null ) mesh.RecalculateNormals(); else { if ( mapping == null ) BuildNormalMapping(mesh, false); RecalcNormals(mesh, verts); } } public void RecalcNormals(Mesh ms, Vector3[] _verts) { int index = 0; Vector3 v30 = Vector3.zero; Vector3 v31 = Vector3.zero; Vector3 v32 = Vector3.zero; Vector3 va = Vector3.zero; Vector3 vb = Vector3.zero; for ( int f = 0; f < tris.Length; f += 3 ) { v30 = _verts[tris[f]]; v31 = _verts[tris[f + 1]]; v32 = _verts[tris[f + 2]]; va.x = v31.x - v30.x; va.y = v31.y - v30.y; va.z = v31.z - v30.z; vb.x = v32.x - v31.x; vb.y = v32.y - v31.y; vb.z = v32.z - v31.z; v30.x = va.y * vb.z - va.z * vb.y; v30.y = va.z * vb.x - va.x * vb.z; v30.z = va.x * vb.y - va.y * vb.x; // Uncomment this if you dont want normals weighted by poly size //float l = v30.x * v30.x + v30.y * v30.y + v30.z * v30.z; //l = 1.0f / Mathf.Sqrt(l); //v30.x *= l; //v30.y *= l; //v30.z *= l; facenorms[index++] = v30; } for ( int n = 0; n < norms.Length; n++ ) { if ( mapping[n].faces.Length > 0 ) { Vector3 norm = facenorms[mapping[n].faces[0]]; for ( int i = 1; i < mapping[n].faces.Length; i++ ) { v30 = facenorms[mapping[n].faces[i]]; norm.x += v30.x; norm.y += v30.y; norm.z += v30.z; } float l = norm.x * norm.x + norm.y * norm.y + norm.z * norm.z; l = 1.0f / Mathf.Sqrt(l); norm.x *= l; norm.y *= l; norm.z *= l; norms[n] = norm; } else norms[n] = Vector3.up; } ms.normals = norms; } }